

FICHA TÉCNICA

ALUMINIO ALEACIÓN MAGNESIO SILICIO 6082

COMPOSICIÓN QUÍMICA

%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Otros	Al
Min. Máx.	0,70 1,30	0,50	0,10	0,40	0,60	0,25	0,20	0,10	0,10	Resto

EQUIVALENCIAS INTERNACIONALES

USA	ESPAÑA	FRANCIA	ALEMANIA	G.B.	SUECIA	SUIZA	CANADA	ITALIA
A.A.	U.N.E.	AFNOR	DIN (1712-1725)	B. S.	S.I.S.	VSM	ALCAN	UNI
6082	L-3453 38.348	A-SG M0,7	AlMgSi1 3.2315	H 30	4212	AlMgSi1Mn		3571

PROPIEDADES MECÁNICAS

BRONCESVAL

	Carga de rotura	Límite elástico	Alargamiento	Resistencia a la	DUREZA	
ESTADO	Rm N/mm²	Rp 0.2 N/mm ²	5,65 V So	Cizalladura N/mm²	BRINELL (HB)	VICKERS
T4	215	130	15	178	70	74
T6	305	270	8	218	100	105
				2.	20 m	

PROPIEDADES FÍSICAS

Módulo elástico N/mm²	Peso específico gms/cm ³	Temperatura de fusión ° C	Coeficiente de dilatac. lineal (20°-100°) 10-6/°C	Conductividad térmica W/m °C	Resistencia eléctrica Micro Ohm cm.	Conductividad eléctrica % IACS	Potencial de disolución V.
69.500	2'70	570-660	23'5	184	3'7	48'6	0'83

RADIOS DE PLEGADO

ESTADO	COEF	0'4-0'8 m/m	0'8-1'6 m/m	1'6-3'2 m/m	3'2-4'8 m/m	4'8-6 m/m	6-10 m/m	10-12 m/m
0	К	0	0'5	1	1'5	1'75	2	2'5
T4	К	1	1'5	2	2'5	3	3'5	4
Т6	К	2	2'5	3'5	4	4'5	5	6

PARA CALCULAR EL RADIO MÍNIMO DE PLEGADO MULTIPLICAR EL ESPESOR DE LA CHAPA POR EL COEFICIENTE K.

FICHA TÉCNICA

ALUMINIO ALEACIÓN MAGNESIO SILICIO 6082

APTITUDES TECNOLÓGICAS

SOLDADURA		MECANIZACIÓN	En estado: 0	En estado: T6
—A la llama	(MB)	-Fragmentación de la viruta	(M)	(R)
—Al arco bajo gas argón	(B)	—Brillo de superficie	()	(MB)
—Por resistencia eléctrica	(MB)			
—Braseado	(B)			
COMPORTAMIENTO NATU	RAL	EMBUTICIÓN	En estado: 0	En estado: T6
—En ambiente rural	(MB)	-Por expansión	(MB)	(M)
—En ambiente industrial	(MB)	—Embutición profunda	(MB)	(M)
—En ambiente marino	(B)			
—En agua de mar	(R)			
ANODIZADO		REPUJADO		MB: Muy buena
—De protección	(MB)	—En estado: 0 (B)	40	B: Buena
—Decorativo	(R)			R: Regular
-Anodizado duro	(MB)			M: Mala, evitar

TRATAMIENTOS TÉRMICOS

Puesto en solución: 535° C ± 5° C de 0,5 a 2 horas.

Temple en agua fría (40° C máx.). Tan rápido como sea posible.

Maduración: Estado T4, 8 días mínimo a 20° C.

Maduración artificial: Estado T6, 16 horas a 165° C ± 5° C ó 8 horas a 175° C ± 5° C.

Recocido: 30 min. a 2 horas a 380°-420° C, seguido de enfriamiento lento. Trabajo en caliente:

desde 300° a 490° C.

PRODUCTOS

CHAPAS, PLACAS, BARRAS TUBOS, PERFILES, ALAMBRE

APLICACIONES Y USOS TÍPICOS

MOLDES INDUSTRIA DEL CALZADO.

MOLDES DE BOTELLAS DE PLÁSTICO POR SOPLADO.

MOLDES TERMOCONFORMADOS.

MOLDES INDUSTRIA DEL CAUCHO.

MOLDES Y MATRICES PARA LA INDUSTRIA EN GENERAL.

MODELOS PARA LA FUNDICIÓN Y PLACAS.

DE USO GENERAL EN LA CONSTRUCCIÓN DE MAQUINARIA INDUSTRIAL, ARMAMENTO Y BLINDAJE.

AUTOMOCIÓN: VEHÍCULOS INDUSTRIALES.

PLANTILLAS.